US ERA ARCHIVE DOCUMENT

On-Campus Composting

Using the ASP Method

US Environmental Protection Agency Food Waste Challenge

Peter Moon, P.E.

December 5, 2013

Raw Feedstocks

Source Separated Organics

Aerated Static Pile Composting

Composting is a Manufacturing Process

A High Quality Finished Product

Common Methods of Composting

Turned Pile Composting

Small Turned Windrow Composting

Large Turned Windrow Composting

Aerated Static Pile Composting

Free-Standing ASP System

Aerated Static Pile Composting 3-Bin System

3-Bin ASP System – Paragon by Barn Pros

Free-Standing T&G Aerated Bin

O₂Compost Micro-Bin – Perfect for Pilot Projects

Institutional ASP Composting Systems

Philadelphia Prison, PA

Food Waste Produced by 900 Inmates

Walla Walla State Penitentiary, WA

Food Waste Produced by 2,000 Inmates

Burke Rehabilitation Hospital, NY

Free-Standing ASP System

Joint Base Lewis McCord, WA

Pilot Project – All Feedstocks Produced On-Site

Plywood Aerated Bins

Washington State University – Research Project

Syracuse University, NY

Micro-Bin Pilot Project – Green Campus Initiative

Composting Principles & Parameters

Microbes Break Down Organic Matter to:

Obtain energy to carry on life processes.

Acquire nutrients (N, P, K) to sustain populations.

Succession of Microbial Communities During Composting

1. Mesophilic bacteria break down soluble, readily degradable compounds (sugars, starches), initiating the compost process

Succession of Microbial Communities

2. Thermophilic bacteria take over as the temperature increases, breaking down proteins, fats, cellulose, and hemicellulose.

Succession of Microbial Communities

3. Fungi and actinomycetes are important during curing phase in attacking the most resistant compounds.

Pathogens

Escherichia coli, Salmonella spp., Staphylococcus aureus, Bacillus subtillus, Cryptosporidium, and Giardia are most common.

Color-enhanced scanning electron micrograph showing Salmonella typhimurium (red) invading cultured human cells

Kevin Sorenson, Snow College

The Composting Process

Compost Mix 4 Critical Parameters

- Carbon to Nitrogen Ratio (C:N ~ 30:1)
- Porosity: Volume of Void Space
 - Bucket Test to Determine Bulk Density and Free Air Space
- Moisture Content (60 − 65%)
 - Squeeze Test to produce a drip or two from a handful of mix
- Homogeneous Blend of Materials

The Secret to Composting is...

Oxygen Depletion in Compost Pile

Aeration

Allows the Operator to:

- Maintain Aerobic Conditions
- Mitigate Impacts from Objectionable Odors
- Manage Pile Temperatures
- Reduce the Loss of Nutrients
- Expedite the Rate of Composting & Curing
- Produce Superior Compost Products

Temperature Change in a Typical Compost Pile

Actual Compost Temperature Data

The ASP Process with a 3-Bin System

3-Bin Top Down Compost System

Liberty Bell Farm, Snohomish

Completed Aeration System

Cross Section of an Aerated Bay

Filling the Bin

Placing the Compost Cover

Compost Cover Thermal Blanket (PFRP) Odor Control (VOC & Ammonia) • Retains Nutrients Fly Control (Vectors) **Retains Moisture** Improves Aesthetics

Turning On the Airflow

Typical Aeration Cycle: 2-min ON & 30-min OFF

No Turning

Monitoring Pile Temperatures

Active Composting to Curing

Volume Loss 25% – 40% in 4 weeks

Stall Management

Removing Solid Manure

Moisture Conditioning the Mix

Dumping Cart into Compost System

Adding Final Cover Layer

Adding the Final Touch

Monitoring Compost Temperatures

Cross Section of a 3-Bay System

Stage 1

Cross Section of a 3-Bay System

Stage 2

Cross Section of a 3-Bay System

Stage 3

University Composting Source Separated Organics

3-Bin Aerated Compost System

Food Waste Produced in Campus Kitchens
And by Food Vendors / Coffee Shops

Prior Attempts at Composting

Worked Well but Limited Capacity for SJU

During Construction

Constructed by the Student
Sustainability Coordinators in 2011

In-Floor Aeration System

Blower / Timer and Aeration Channels

Collecting and Transporting the SSO

Mixing Area – Blending Materials

Mixing and Filling a Bin

30-Days Active Composting then Curing

Curing and then Screening

Student "Pea Patch" & Biology Instruction

Sustainability²

Juniors and Seniors Cross-Training
Freshmen and Sophomores

Getting Started with a Pilot Project

Pilot Project

Plywood Aerated Bins

Very Simple and Inexpensive

Allows the University to:

- Quickly and inexpensively test the feasibility of on-campus composting
- Provide hands-on training in the Science and Art of Composting
- Produce finished compost to test in the lab and marketplace
- Identify logistical constraints and propose / test solutions

Student's Take Action

Allows the University to:

- Enroll the participation of Student Sustainability Coordinators.
- Integrate composting into the science and engineering curriculum
- Answer the question, "Is on-campus composting, socially, economically and environmentally sustainable?"

Bridge the Gap Between Theory & Practice

Allows the University to:

- Quantify the reduction in carbon footprint
- Conduct a cost-benefit analysis to determine Return on Investment
- Reach a Go / No-Go decision quickly and at minimal cost
- Establish basis for full scale system design.

US Composting Council's Annual Conference January 26 – 29, 2014

Oakland, California

www.compostingcouncil.org

www.o2compost.com

360.568.8085

peter@o2compost.com